Growing Crops Under Solar Panels? Now There’s a Bright Idea

IN JACK’S SOLAR Garden in Boulder County, Colorado, owner Byron Kominek has covered 4 of his 24 acres with solar panels. The farm is growing a huge array of crops underneath them—carrots, kale, tomatoes, garlic, beets, radishes, lettuce, and more. It’s also been generating enough electricity to power 300 homes. “We decided to go about this in terms of needing to figure out how to make more money for land that we thought should be doing more,” Kominek says.

Rooftops are so 2020. If humanity’s going to stave off the worst of climate change, people will need to get creative about where they put solar panels. Now scientists are thinking about how to cover canals with them, reducing evaporation while generating power. Airports are filling up their open space with sun-eaters. And space doesn’t get much more open than on a farm: Why not stick a solar array in a field and plant crops underneath? It’s a new scientific (and literal) field known as agrivoltaics—agriculture plus photovoltaics—and it’s not as counterintuitive as it might seem.

Yes, plants need sunlight, but some need less than others, and indeed get stressed by too many photons. Shading those crops means they will require less water, which rapidly evaporates in an open field. Plus, plants “sweat,” which cools the panels overhead and boosts their efficiency.

“It is a rare win-win-win,” says Greg Barron-Gafford, an earth system scientist at University of Arizona who’s studying agrivoltaics. “By growing these crops in the shade of solar arrays, we reduce the amount of that intense sunlight that bakes off the water and stresses out the plant.” Barron-Gafford is among the recipients of a new $10 million grant from the USDA’s National Institute of Food and Agriculture to research agrivoltaics for different regions, crops, and climates.

Barron-Gafford has been running experiments to quantify several variables—like growth, water use, and energy production—to determine which crops might benefit most. For instance, he’s grown salsa ingredients—cilantro, peppers, and tomatoes—and found that they grow just as well, if not better, under solar panels than in the open. They also only use half the water. (“Think if you spilled your water bottle in the shade versus the sun,” says Barron-Gafford.) He also found that the panels significantly reduce air temperatures, which would benefit farmworkers tending to the plants. His work suggests that the panels might act as a protective bubble to shield crops from extreme heat associated with climate change, which overwhelms crops and decreases their yields.

Credits: Wired

Leave a Reply

Your email address will not be published. Required fields are marked *